Quantitative structure-activity relationships by neural networks and inductive logic programming. II. The inhibition of dihydrofolate reductase by triazines

نویسندگان

  • Jonathan D. Hirst
  • Ross D. King
  • Michael J. E. Sternberg
چکیده

Neural networks and inductive logic programming (ILP) have been compared to linear regression for modelling the QSAR of the inhibition of E. coli dihydrofolate reductase (DHFR) by 2,4-diamino-5-(substituted benzyl)pyrimidines, and, in the subsequent paper [Hirst, J.D., King, R.D. and Sternberg, M.J.E. J. Comput.-Aided Mol. Design, 8 (1994) 421], the inhibition of rodent DHFR by 2,4-diamino-6,6-dimethyl-5-phenyl-dihydrotriazines. Cross-validation trials provide a statistically rigorous assessment of the predictive capabilities of the methods, with training and testing data selected randomly and all the methods developed using identical training data. For the ILP analysis, molecules are represented by attributes other than Hansch parameters. Neural networks and ILP perform better than linear regression using the attribute representation, but the difference is not statistically significant. The major benefit from the ILP analysis is the formulation of understandable rules relating the activity of the inhibitors to their chemical structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relating Chemical Structure to Activity: An Application of the Neural Folding Architecture

This paper is based on the neural folding architecture (FA). The FA is a recurrent neural network architecture which is especially suited for adaptive structure processing, i.e. learning approximations of mappings from symbolic term structures to IR n. The main objective of this paper is to demonstrate that the FA can be successfully applied to approximate quantitative structure activity relati...

متن کامل

Quantitative structure-activity relationships by evolved neural networks for the inhibition of dihydrofolate reductase by pyrimidines.

Evolutionary computation provides a useful method for training neural networks in the face of multiple local optima. This paper begins with a description of methods for quantitative structure activity relationships (QSAR). An overview of artificial neural networks for pattern recognition problems such as QSAR is presented and extended with the description of how evolutionary computation can be ...

متن کامل

Drug design by machine learning: the use of inductive logic programming to model the structure-activity relationships of trimethoprim analogues binding to dihydrofolate reductase.

The machine learning program GOLEM from the field of inductive logic programming was applied to the drug design problem of modeling structure-activity relationships. The training data for the program were 44 trimethoprim analogues and their observed inhibition of Escherichia coli dihydrofolate reductase. A further 11 compounds were used as unseen test data. GOLEM obtained rules that were statis...

متن کامل

Abstract Linear and nonlinear quantitative structure-activity relationship (QSAR) models and docking score functions were developed for dihydrofolate reductase (DHFR) inhibition by cycloguanil derivatives using small molecule descriptors derived from MOE and in silico docking

Linear and nonlinear quantitative structure-activity relationship (QSAR) models and docking score functions were developed for dihydrofolate reductase (DHFR) inhibition by cycloguanil derivatives using small molecule descriptors derived from MOE and in silico docking energies. The best QSAR models and docking score functions were identified when using artificial neural networks optimized by evo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of computer-aided molecular design

دوره 8 4  شماره 

صفحات  -

تاریخ انتشار 1994